Journal of Materials Chemistry A

PAPER View Article Online
View Journal | View Issue

Cite this: J. Mater. Chem. A, 2017, 5,

Received 17th April 2017 Accepted 20th July 2017

DOI: 10.1039/c7ta03321d

rsc.li/materials-a

Fractal to monolayer growth of AgCl and Ag/AgCl nanoparticles on vanadium oxides (VO_x) for visible-light photocatalysis†

Mukesh Sharma,[†]a Biraj Das,[†]a Jugal Charan Sarmah,^b Anil Hazarika,^c Biplab K. Deka,^d Young-Bin Park^d and Kusum K. Bania ^{*}
**Bania **
**Table 1. **
**Table 2. **
**Table 3. **
**Table 3

A facile and simple methodology was adopted for the trapping of highly crystalline AgCl and Ag/AgCl nanoparticles (NPs) into the interlayer spacings of vanadium oxides (VO $_x$). Self-organization of AgCl and Ag/AgCl-NPs on VO $_x$ was found to be governed by the nature of the dicarboxylic acids used during the synthesis of the nanocomposites. A "fractal-like" morphology of the AgCl@VO $_x$ nanocomposite was achieved in the presence of cis-1,2 cyclohexanedicarboxylic acid. Heating of the AgCl@VO $_x$ nanocomposite above 68 °C resulted in the growth of polydispersed and ultrafine (3–4 nm) Ag/AgCl-NPs and its self-organization into monolayer formation on a partly crystalline VO $_x$ matrix. Change in the conformation of the dicarboxylic acid to the trans-isomer resulted in the formation of a 'rod-like' structure of Ag/AgCl-NPs on a highly crystalline VO $_x$ matrix. The band gaps of the nanocomposites were within the range of 1.8 to 2.9 eV. Because of such a low band gap, the synthesized nanocomposites were found to be highly active toward the photooxidation of methylene (MB) and methyl orange (MO) under sunlight.

Introduction

Semiconductors and nanomaterials with a suitable band gap that can trap solar energy have emerged as a fascinating class of materials due to their multiple applications in solar cells, photovoltaics, optoelectronics and Li-batteries, for example.¹⁻⁶ Apart from their application in energy storage devices, such materials are also very useful as photocatalysts in water treatment and water splitting reactions.⁷⁻¹⁰ Photocatalysts have the ability to absorb solar light of different wavelengths based on the band gap.⁷⁻⁹ Semiconductors with a small band gap, such as CdS and BiVO₄, respond well to visible light and act as a photocatalyst;¹¹⁻¹³ although not all semiconducting materials with small energy barriers act in this way. For example, TiO₂, a well-known photocatalyst, does not use visible light during photocatalysis.⁹ Furthermore, materials with a larger band gap can

sometimes also act as a photocatalyst and promote reactions.¹⁴ Nanoparticles with surface plasmon resonance (SPR) also appear to be potential candidates for visible-light photocatalysis,¹⁵,¹⁶ although single plasmon nanoparticles show poor stability which limits their application.¹⁷ Materials with the ability to absorb visible light are, however, considerably less common compared with those that can use UV-light. Therefore, a substantial amount of research has been devoted toward the development of materials to act as visible-light carriers.⁷⁻¹³ Furthermore, reacting molecules do not usually absorb visible light directly to drive a reaction. Visible-light photocatalysts can thus act as a bridge to promote energy transfer between visible light and the reacting substrates.¹¹8-2²

Removal of organic contaminants such as colored dye (e.g. methylene blue [MB] or methyl orange [MO]) from water using a visible-light photocatalyst has become a major area of research due to the increase in environmental pollution from industrial waste²³ and stringent regulations imposed by environmental laws.²⁴ Among the different processes adopted by researchers,¹³ photocatalytic oxidation or degradation of such organic dye contents from water is considered to be the greener approach.⁹⁻¹¹ Hence, in recent progress a large number of catalysts have been designed for the photocatalytic decomposition of these organic pollutants.⁷⁻¹³ Very recently, Zhang et al.²⁵ found ultradispersed amorphous silver silicates/ultrathin g-C₃N₄ nanosheet heterojunction composites (a-AgSiO/CNNS) to be effective photocatalysts for dye degradation.^{26,27} Silver doped in vanadium oxides (AgVO_x) also shows good photo-redox

[&]quot;Department of Chemical Sciences, Tezpur University, Assam, 784028, India. E-mail: kusum@tezu.ernet.in; bania.kusum8@gnail.com; Tel: +91 9859929360

^bDepartment of Physics, Tezpur University, Assam, 784028, India

^cSophisticated Analytical Instrumentation Center (SAIC) at Tezpur University, Assam, 784028, India

⁴School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea, 44919

[†] Electronic supplementary information (ESI) available: Materials, physical measurements, TGA of compounds B, C and D, FTIR spectrum of compound D, cyclic voltammograms of compounds C and D, TEM of compound D and HRTEM images of the four compounds. See DOI: 10.1039/c7ta03321d

[‡] Both the authors contributed equally.