3 (Sem-4/CBCS) MAT HC 1

2024

MATHEMATICS

(Honours Core)

Paper: MAT-HC-4016

(Multivariate Calculus)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: $1 \times 10=10$
 - (a) If f(x, y) = ln(y x), then find domain of it.
 - (b) Define level curve of a function f(x, y) at a constant C.
 - (c) Find f_x if $f(x, y) = (\sin x^2)\cos y$.

- (d) If $f(x, y) = \sin xy$, then df is
 - (i) $y\cos xy\,dx + x\cos xy\,dy$
 - (ii) $y\cos xy\,dy + x\cos xy\,dx$
 - (iii) $y\cos x dx + x\cos y dy$
 - (iv) cos xy dx + cos xy dy (Choose the correct option)
- (e) Evaluate $\frac{\partial(x, y)}{\partial(r, \theta)}$ for the transformation $x = r\cos\theta$, $y = r\sin\theta$.
- (f) If $P_0(x_0, y_0)$ is a critical point of f(x, y) and f has continuous 2nd order partial derivatives in a disk centered at (x_0, y_0) and $D = f_{xx}f_{yy} f_{xy}^2$, then a relative minimum occurs at P_0 , if
 - (i) $D(x_0, y_0) > 0$ and $f_{yy}(x_0, y_0) < 0$
 - (ii) $D(x_0, y_0) > 0$ and $f_{yy}(x_0, y_0) > 0$
 - (iii) $D(x_0, y_0) < 0$ and $f_{yy}(x_0, y_0) < 0$
 - (iv) $D(x_0, y_0) < 0$ and $f_{yy}(x_0, y_0) > 0$ (Choose the correct option)

- (g) The curl of a vector field V(x, y, z) = u(x, y, z)i + v(x, y, z)j + w(x, y, z)k is
- (i) $\left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}\right) i + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right) j + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) k$
- (ii) $\left(\frac{\partial w}{\partial y} \frac{\partial v}{\partial z}\right) i + \left(\frac{\partial u}{\partial z} \frac{\partial w}{\partial x}\right) j + \left(\frac{\partial v}{\partial x} \frac{\partial u}{\partial y}\right) k$
- (iii) $\left(\frac{\partial v}{\partial z} \frac{\partial w}{\partial y}\right) i + \left(\frac{\partial w}{\partial x} \frac{\partial u}{\partial z}\right) j + \left(\frac{\partial u}{\partial y} \frac{\partial v}{\partial x}\right) k$
- (iv) $\left(\frac{\partial u}{\partial y} \frac{\partial v}{\partial x}\right) i + \left(\frac{\partial v}{\partial z} \frac{\partial w}{\partial y}\right) j + \left(\frac{\partial w}{\partial x} \frac{\partial u}{\partial z}\right) k$ (Choose the correct option)
- (h) Define work as a line integral.
- (i) State Green's theorem on a simply connected region D.
- (j) If a vector field F and curl F are both continuous in a simply connected region D on \mathbb{R}^3 , then F is conservative in D if curl $F \neq 0$. State whether this statement is true or false.

2. Answer the following questions:

$$2 \times 5 = 10$$

(a) Show that the function f is continuous at (0,0) where

$$f(x, y) = \begin{cases} y \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

- (b) Compute the slope of the tangent line to the graph of $f(x, y) = x^2 \sin(x + y)$ at the point $P\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ in the direction parallel to the XZ plane.
- (c) Evaluate $\iint_{R} \frac{2xy}{x^2 + 1} dA$ where $0 \le x \le 1$, $1 \le y \le 3$.
- (d) Show that $\operatorname{div} F = 0$ and $\operatorname{curl} F = 0$, if F is a constant vector field.
- (e) Evaluate $\iint_{0}^{2} \int_{0}^{2} 8x^2yz^3dxdydz$.

- 3. Answer **any four** questions : 5×4=20
 - (a) (i) Find $\frac{\partial w}{\partial r}$ where $w = e^{2x-y+3z^2}$ and x = r + s t, y = 2r 3s, z = cosrst.
 - (ii) Show that $\lim_{(x, y)\to(0, 0)} \frac{x+y}{x-y}$ does not exist.
 - (b) (i) If f has a relative extremum at $P_0(x_0, y_0)$ and both f_x and f_y exist at (x_0, y_0) , then prove that $f_x(x_0, y_0) = f_y(x_0, y_0) = 0. \qquad 2$
 - (ii) Discuss the nature of the critical points of the function $f(x, y) = (x-2)^2 + (y-3)^4.$ 3
 - (c) Use a polar double integral to show that a sphere of radius a has volume $\frac{4}{3}\pi a^3.$

- (d) An object moves in the force field $F = y^2i + 2(x+1)yj$. How much work is performed as the object moves from the point (2,0) counterclockwise along the elliptical path $x^2 + 4y^2 = 4$ to (0,1), then back to (2,0) along the line segment joining the two points.
- (e) (i) Evaluate $\int_C (x^2 + y^2) dx + 2xy dy$ where C is the quarter circle $x^2 + y^2 = 1$ from (1, 0) to (0, 1).
 - (ii) A wire has the shape of the curve $x = \sqrt{2} \sin t$, $y = \cos t$, $z = \cos t$ for $0 \le t \le \pi$. If the wire has density $\delta(x, y, z) = xyz$ at each point (x, y, z), find its mass.
- (f) Find the volume of the solid in the first octant that is bounded by the cylinder $x^2 + y^2 = 2y$, the half cone $z = \sqrt{x^2 + y^2}$ and the *xy*-plane.

- 4. Answer the following questions: 10×4=40
 - (a) (i) Let f(x, y) be a function that is differentiable at $P_0(x_0, y_0)$. Prove that f has a directional derivative in the direction of the unit vector $u = u_1i + u_2j$ given by

$$D_u f(x_0, y_0) = f_x(x_0, y_0) u_1 + f_y(x_0, y_0) u_2$$

- (ii) Find the directional derivative of $f(x, y) = ln(x^2 + y^2)$ at $P_0(1, -3)$ in the direction of v = 2i 3j using the gradient formula.
- (iii) Find the equations of the tangent plane and the normal line to the cone $z^2 = x^2 + y^2$ at the point where x = 3, y = 4 and z > 0.

OR

(i) Prove that if f(x, y) is differentiable at (x_0, y_0) , then it is continuous there.

4

- (ii) When two resistances R_1 and R_2 are connected in parallel, the total resistance R satisfies $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$. If R_1 is measured as 300 ohms with a maximum error of 2% and R_2 is measured as 500 ohms with a maximum error of 3%, then find the maximum percentage error in R.
- (b) (i) Use the method of Lagrange multipliers to minimize $f(x, y) = x^2 xy + 2y^2 \text{ subject to}$ 2x + y = 22.
 - (ii) Find all relative extrema and saddle points on the graph of $f(x, y) = x^2 y^4.$

OR

(i) Find the absolute extrema of the function $f(x, y) = e^{x^2 - y^2}$ over the disk $x^2 + y^2 \le 1$.

(ii) Suppose E be an extreme value of f subject to the constraint g(x,y)=C. Prove that the Lagrange multiplier λ is the rate of change of E with respect to C.

(c) (i) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} y \sqrt{x^2 + y^2} \, dy \, dx$ by converting to polar coordinates.

(ii) Evaluate $\iiint_D e^z dv$ where *D* is the region described by the inequalities $0 \le x \le 1$, $0 \le y \le x$ and $0 \le x \le x + y$.

OR

(i) Find the volume of the solid bounded above by the plane z = y and below in the xy-plane by the part of the disk $x^2 + y^2 \le 1$ in the 1st quadrant.

- (ii) When two resistances R_1 and R_2 are connected in parallel, the total resistance R satisfies $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$. If R_1 is measured as 300 ohms with a maximum error of 2% and R_2 is measured as 500 ohms with a maximum error of 3%, then find the maximum percentage error in R.
- (b) (i) Use the method of Lagrange multipliers to minimize $f(x, y) = x^2 xy + 2y^2 \text{ subject to}$ 2x + y = 22.
 - (ii) Find all relative extrema and saddle points on the graph of $f(x, y) = x^2y^4$.

OR

(i) Find the absolute extrema of the function $f(x, y) = e^{x^2 - y^2}$ over the disk $x^2 + y^2 \le 1$.

(ii) Suppose E be an extreme value of f subject to the constraint g(x,y)=C. Prove that the Lagrange multiplier λ is the rate of change of E with respect to C.

(c) (i) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} y \sqrt{x^2 + y^2} \ dy dx$ by converting to polar coordinates.

(ii) Evaluate $\iiint_D e^z dv$ where *D* is the region described by the inequalities $0 \le x \le 1$, $0 \le y \le x$ and $0 \le x \le x + y$.

OR

(i) Find the volume of the solid bounded above by the plane z = y and below in the xy-plane by the part of the disk $x^2 + y^2 \le 1$ in the 1st quadrant.

- (ii) Evaluate: $\iint_D x dV$ where D is the solid in the 1st octant bounded by the cylinder $x^2 + y^2 = 4$ and the plane 2y + z = 4.
- (d) (i) Let C be a piecewise smooth curve that is parameterized by a vector function R(t) for $a \le t \le b$ and let F be a vector field that is continuous on C. If f is a scalar function such that $F = \nabla f$, then prove that $\int_C F.dR = f(Q) f(P)$ where Q = R(b) and P = R(a) are the end points of C.

 Using it evaluate the line integral $\int_C F.dR$, where $\int_C F.dR$, where

the path described by

 $R(t) = \left[t^3 \sin \frac{\pi}{2}t\right] i - \left[\frac{\pi}{2} \cos \left(\frac{\pi}{2}t + \frac{\pi}{2}\right)\right] j$ for $0 \le t \le 1$ 5+3=8

(ii) Determine whether the vector field $F(x, y) = \frac{(y+1)i - xj}{(y+1)^2}$ is conservative.

OR

- (i) Evaluate $\oint_C \left(\frac{1}{2}y^2dx + zdy + xdz\right)$ where C is the curve of intersection of the plane x + z = 1 and the ellipsoid $x^2 + 2y^2 + z^2 = 1$, oriented counterclockwise as viewed from above.
- (ii) Evaluate $\iint_S F.NdS$ where $F = x^2i + xyj + x^3y^3k$ and S is the surface of the tetrahedron bounded by the plane x + y + z = 1 and the coordinate planes with outward unit normal vector N.

4000

4